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ABSTRACT

This study presents Dijkstra's algorithm using permutation method. A

directed graph that contains nodes with a speci�c initial and end position

will be connected at every edge with their own weights. The constructed

algorithm plays an important role to determine the shortest path by using

the concepts of Dijkstra's algorithm. All the nodes in the shortest paths

will be used as the control points of Bézier curves during its construction.

Then, the shortest path will be interpolated using Bézier curves with

control points to provide a smooth path planning curve.
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1. Introduction

Path planning is often used in robotics, whether in online or o�ine envi-
ronments by Yin et al. (2017). It can be divided into two types, which are
global and local path planning. Both path plannings have two things in com-
mon, which are the initial position and the �nal destination. The di�erences
between global and local path planning are the navigation of robots from the
initial position in the process of reaching the goal and avoiding collision. Obsta-
cles are categorised into two, which are static and dynamic obstacles (Pandey
and Parhi, 2017).

Static obstacles refer to non-moving obstacles where the robotic environ-
ment is known in advance with the help of localization maps before reaching
its �nal destination. This localization map and non-moving obstacles are de-
scribed as the classical approach by Raja and Pugazhenthi (2012). Meanwhile,
dynamic obstacles occur when we do not have any speci�c information about
the obstacles in between the starting point and the ending point. Hence, by
using evolutionary optimization algorithm, the path can be executed on a real-
time basis, which will give an edge over the classical approach. Robots can
be programmed to deal with obstacles via several methods. The methods that
are frequently used are Rapidly Exploring Random Tree (RRT) by Bircher
et al. (2017) and Probabilistic Road Map (PRM) by Akbaripour and Masehian
(2017).

These methods can generate polygonal networks of the collision-free path.
Raja and Pugazhenthi (2012) stated that the paths can be calculated by con-
sidering multi-objectives, such as the shortest distance and the time of travel.
The robotic movements can be polygonal-wise or a consecutive combination
of connecting straight lines. Therefore, the optimum polygonal path planning
needs to be converted into a curvy path to reduce the sharp robotic movement,
thus reducing the traveling time while robotics manoeuvre from one place to
another.

Bézier curves are one of the major discoveries in Computer Aided Geo-
metric Design (Misro et al., 2017a,d). Bézier curves play an important role
to determine the curvy path from the initial nodes to the ending nodes. Re-
cently, there are a lot of research on path planning using Bézier curve as in
Cimurs et al. (2017) and Zhang et al. (2015). Dijkstra's algorithm helps to
�nd the shortest paths between the source and the �nal nodes on a graph.
It was created by a Dutch computer scientist, Edsger Wybe Dijkstra (Schri-
jver, 2012). Previous study had constructed path planning using Bézier curve
and Dijkstra's Algorithm; in Zhou et al. (2011), piecewise linear path planning
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is implemented based on Voronoi's diagram and Dijkstra's algorithm before
smoothing the path using curve connecting procedure. In this research, the
optimum shortest curvy path method can be achieved after �nding all the pos-
sible paths on a graph using permutation method and by determining all the
nodes (control points) for Bézier curves. This study also aims to interpolate a
smooth curve with the calculated shortest path, and it will involve a directed
graph with non-negative weights.

2. Methodology

2.1 Directed Graph and Non-Negative Weight

Let G = (V,E) be a graph, where V is a set of all the nodes (or vertices)
and E is a set of all the edges. Between the edges, there are non-negative
weights that exist in the graph. This paper aims to �nd the shortest path by
using the total number of weights for a single path. Thus, an algorithm must
be created to calculate the total number of weights on a graph. Therefore, the
concept from Dijkstra's algorithm is adapted with non-negative weights.

2.2 Permutation

Permutation is a way of arranging the order of di�erent elements. Notation
of P (s, r) is used to represent the number of ways to arrange r elements from
a set of s elements. If s is a positive integer and r is an integer with 1 ≤ r ≤ n,
then there are

P (s, r) = s(s− 1)(s− 2)...(s− r + 1), (1)

where r-permutation of a set with s distinct elements (Rosen and Krithivasan,
2012). The number of di�erent permutations of s objects, where there are s1
indistinguishable objects of type 1, s2 indistinguishable objects of type 2, and
sj indistinguishable objects of type j, is

s!

s1!s2!...sj !
. (2)

Noted that, for the 1st until the rth position, the �rst element in the 1st

position can be chosen in n number of ways. For the 2nd position, since one
of the numbers had been chosen in the 1st position, thus the 2nd position can
be chosen in s − 1 number of ways. This will go on until the last position,

Malaysian Journal of Mathematical Sciences 47



Safaruddin, M. S. & Misro, M. Y.

which is rth term where there are (s− (r − 1)) number of ways to choose. By
multiplying all the terms, we have

P (s, r) = s(s− 1)(s− 2)...(s− r + 1).

The number of permutations can be determined when the s1 objects of
type one can be placed among the s positions in C(s, s1) ways, leaving s− s1
positions free. Then, the objects of type two can be placed in C(s − s1, s2)
ways, leaving s − s1 − s2 positions free. Continue placing the objects of type
three, ..., type j − 1, until the last stage, sj objects of type j can be placed
in C(s− s1 − s2 − ...− sj − 1, sj) ways. Hence, by the product rule, the total
number of di�erent permutations are

C(s, s1)C(s− s1, s2)...C(s− s1 − s2 − ...− sj − 1, sj) (3)

=
s!

s1!(s− s1)!
(s− s1)!

s2!(s− s1 − s2)
...
(s− s1 − ...sj−1)!

sj !0!
(4)

=
s!

s1!s2!...sj !
.

2.3 Bézier Curve

Given a set of control points P0, P1, ..., Pn, the corresponding Bézier curve
is de�ned as

z(t) =

n∑
i=0

PiB
n
i (t), 0 ≤ t ≤ 1, (5)

where Bn
i (t) is the Bernstein polynomial and Pi is the i

th vectors of control
points. The Bernstein polynomials of degree n are de�ned explicitly by

Bn
i (t) =

{ n!
i!(n−1)! t

i(1− t)n−i, if 0 ≤ i ≤ n,
0, otherwise,

}
(6)

where i = 0, 1, ..., n and the binomial coe�cients are denoted by
(
n
i

)
. Some of

the properties of Bernstein polynomial are given as follows:

Partition of Unity

According to Farin (2002), for any value of t, the sum of the Bernstein polyno-
mial is equal to one.

z(t) =

n∑
i=0

Bn
i (t) = 1. (7)
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Non-Negativity

The Bernstein polynomials are non-negative on the interval [0,1], it is de�ned
in Marsh (2006) to be

Bn
i (t) ≥ 0, t ∈ [0, 1]. (8)

The non-negativity is rather obvious from the de�nition of the Bernstein poly-
nomials. Bézier curve also has several properties that needs to be satis�ed in
order to construct a smooth curve. Some of the properties of Bézier curve that
we want to highlight in this research are:

Endpoint Interpolation

A Bézier curve always passes through the �rst and the last control points. From
Equation (5), for t = 0 and t = 1, the Bézier curve, z(t) will be

z(0) = P0,
z(1) = Pn.

(9)

Convex Hull Property

Figure 1 shows a Bézier curve that is constructed using 5 di�erent nodes (con-
trol points). The blue dotted line is the control polygon. The Bézier curve
lies inside the control polygon, therefore this Bézier curve satis�es the convex
hull property. As introduced in Misro et al. (2019a), the curvature can be used
to analyse how the curves behave for each curve interpolation. The radius of
curvature r is given by r = 1/κ. When r approaches ∞, the curve becomes a
straight line as κ(t) = 0 where t ∈ [0, 1]. The curvature κ(t) of the curve can
be evaluated as

κ(t) =
z′(t)× z′′(t)
‖z′(t)‖3

. (10)

Figure 1: Convex hull of Bézier curve.
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3. Path Planning Algorithm

For a given start and endpoint, the objective is to produce the shortest path
using permutation method and to interpolate the shortest path to achieve a
smooth Bézier curve. This algorithm starts by �nding all the possible paths of
the directed graph. The shortest path is determined by choosing the optimum
number of total weights. Weights in each path are represented by distance and
time of travel between each node.

This algorithm has four steps in total. The �rst step is to design a directed
graph that resembles movement environments, which consists of several nodes
and its weights that will be stored in a matrix form. The second step is to
�nd all possible paths using permutation method. The third step is to �nd the
shortest path by calculating the number of weights for each path. Lastly, the
fourth step is to interpolate a smooth Bézier curve with all the control points
and to determine a smooth path planning using curvature analysis.

3.1 First Step: Produce a Directed Graph with several

Nodes and its Weights

For this directed graph, 16 nodes were set as the dimension size of a robotic
environment. All 16 nodes with weights will be stored inside a 4 x 4 matrix.
Note that every edge inside the graph is connected with every node and contains
its weight that are randomly generated. Multi-objective had been considered
in this research as follows:

1. The distance between each node.

2. and, the time travel between each node.

If node 1 and node 2 are connected and contains value 2 for distance and
value 3 for time travel, so the value will be in this form

matrix[1, 2] = {2, 3} . (11)

Thus, the directed graph is as shown in Figure 2 below with node 1(bottom
right) as the starting node and node 16 (top left) as the ending node.
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Figure 2: The directed graph with a total of 16 nodes and its own weight on every edge connected.

3.2 Second Step: Finding All the Possible Paths of the

Directed Graph

The second step will receive the number of nodes visited in the North and
West direction. This direction is arbitrarily chosen and can be extended into
North, South, East, and West, but the number of nodes visited for every pos-
sible path will not be the same. Therefore, for this study, two directions are
set. Once the algorithm receives the number of nodes visited for each direction,
the two sets of North and West directions will be stored. For example, if the
number of nodes visited in North and West is 3, then the direction sets will be
given as follows

{w,w,w} and {n, n, n} (12)

where n is the North direction and w is the West direction. Then, the algorithm
will combine these two sets into a new set as shown below

{w,w,w, n, n, n} . (13)

Next, the algorithm will permute Equation (12) to get all the possible paths in
North and West direction.
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3.3 Third Step: Finding the Shortest Path by Calculating

the Lowest Total Number of Weights

After retrieving all the possible paths, the total number of weights and the
nodes visited for each path will be recorded. Recall that every weight has been
stored in a matrix; this algorithm will call every weight based on the nodes
visited in North and West direction for all possible paths in a loop function.
The loop function will check the direction for each permuted path and extract
the values inside the matrix. Then, the number of weights for each node visited
will be totaled up. Once all the total number of weights for each possible path
had been calculated, the algorithm will �nd the lowest total number of weights
by evaluating the minimum total number of weights. Thus, the lowest total
number of weights for the possible path is the shortest path in the directed
graph.

3.4 Fourth Step: Interpolate a Smooth Bézier Curve with

all the Control Points

After the shortest path had been identi�ed with the respective nodes visited,
the algorithm will set all the visited nodes as control points. Then, by using
Equation (6), the shortest path can be interpolated into a smooth Bézier curve
from the initial node to the goal node. The curvature pro�le can be computed
using Equation (10). The value of the curvature for each curve can be compared
to obtain the best path planning.

4. Result and Discussion

Recall that there are distance and time travelled as multi-objectives in the
directed graph. We separate the results into two categories

1. One Dimensional Weight, and

2. Two Dimensional Weights.
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4.1 One Dimensional Weight

4.1.1 Shortest Path based on the Total Number of Distance

Figure 3 shows a directed graph constructed with 16 nodes and has its
weight on every edge connected (left) and its Bézier curve interpolation (right).
The red line in Figure 3 (left) shows the shortest path planning based on the to-
tal number of distance. {1, 5, 6, 7, 11, 12, 16} show the sequence of nodes visited
with the total distance of 20. Bézier curve interpolation can be constructed in
Figure 3 (right) using the same nodes as in Figure 3 (left) as its control points.
The curve preserves its endpoint interpolation property as in Equation (9).
This endpoint property was very useful in order to ensure that the path plan-
ning starts and ends at the same points as desired. The blue dotted lines are
the convex hull while the blue circles are the control points for the Bézier curve
as in Figure 3 (right). This curve lies within the convex hull and the domain for
this curve is t ∈ [0, 1], thus, all the Bernstein polynomials are non-negative. All
the Bernstein polynomial are the coe�cient of the expression 1 = (t+(1− t))n.
Hence, the sum is equal to one and it satis�es the partition of unity.

Figure 3: The shortest path (left) and the smooth Bézier curve with minimum total number of
distances (right).

4.1.2 Shortest Path based on the Total Number of Time Travelled

Figure 4 (left) shows the shortest path based on the total number of time
travelled and Figure 4 (right) shows the interpolation of Bézier curve. The
curves are constructed by using the same nodes visited as in Figure 4 (left)
which is {1, 2, 3, 4, 8, 12, 16} with 34 as the total number of time travelled.
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Figure 4: The shortest path (left) and the smooth Bézier curve with minimum total number of
time travelled (right).

4.2 Two Dimensional Weights

For a two-dimensional weight, the calculation is based on the total number
of combined weights which are the distance and the time travelled. Then,
the algorithm will �nd the minimum total number of the combined weights
to retrieve the shortest path as shown in Figure 5. Note that there are two
shortest paths based on the total number of distance and time travelled using
the same weight for each node.

The shortest path in Figure 5 (left) has a shorter distance but longer travel
time, while the shortest path on Figure 5 (right) has a shorter travel time but
longer distance. Even so, they both have the same total number of distance
and time travelled combined. Note that shortest paths of Figure 5 are not the
same as the shortest path in Figure 3 (left) and Figure 4 (left). This happened
due to the algorithm that calculated the combined total number of distance
and time travelled to produce the shortest path as in Figure 5. Meanwhile, in
Figure 3 (left) and Figure 4 (left), the algorithm calculated the total number
of distance and time travelled separately.
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Figure 5: The shortest paths of combined weight with preferable distance (left) and preferable
travel time (right).

Next, the shortest path will be interpolated into smooth Bézier curves as
shown in Figure 6 in correspondent to the same shortest paths in Figure 5. From
Figure 6, we cannot identify the best interpolating path planning curve based
only on the combined total numbers of distance and time travelled. Therefore,
we require an extra mechanism to determine the best interpolation curve using
curvature as in Equation (10).

Figure 6: The Bézier curve interpolation of combined weight with preferable distance (left) and
preferable travel time (right).

Based on Figure 6, it can be observed that both curves have the same total
number of weight but di�erent nodes visited, thus the control points for its
Bézier curves are di�erent. This led to a di�erent curvature pro�les for the
Bézier curves in Figure 7 respectively. By comparing both curvature pro�les in
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Figure 7, we can identify the best curve interpolation for path planning in two-
dimensional weight even though the total combined weight of distance and time
travelled are the same. From this result, Figure 6 (left) with a more preferable
distance will yield a very smooth path planning based on the curvature pro�le
in Figure 7 (left).

Figure 7: The curvature pro�le for the shortest path based on the total number of distance (left)
and time travelled (right) in Figure 6 respectively.

The curvature in Figure 7 (left) does not have a negative value compared
to Figure 7 (right), while both curvatures have the same maximum curvature
values. The absolute curvature values between the maximum and the minimum
showed that Figure 7 (left) has less value compared to Figure 7 (right). Fur-
thermore, considering the number of turns for interpolation curves in Figure 6,
Figure 6 (left) will give you less number of turns compared to Figure 6 (right).
Hence, we can conclude that the shortest path in Figure 5 (left) with a more
preferable distance will provide the best path planning.

Apart from the information on the distance and time travelled, all the
interpolation of Bézier curves managed to satisfy the important properties in
all cases. The shortest paths are generated from the nodes visited that consists
of weights on its edge. Thus, the number of turns of interpolating curve for
smooth path planning based on the shortest path generated for each case will
be a useful information for robotics movement. The number of turns for the
robotics is crucial to determine the speed and to ensure a smooth manoeuvre
before reaching the �nal destination.

5. Conclusion

This paper presents an algorithm to �nd the shortest path for a multi-
objectives environment using permutation method based on the concepts in
Dijsktra's algorithm, as well as interpolating the shortest path into a smooth
Bézier curve. The shortest path depends on the number of weights between
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each node. The lower the number of weights, the higher the possibility for
the nodes to be visited. Once the shortest path is calculated, a smooth Bézier
curve can be constructed. The theory in this paper can be applied for an
unmanned military vehicle (UMV), where a smooth curve is needed especially
in a multi-objectives environment that may occur due to topological factors,
fuel consumption, and air resistance. For future work, this research can be
extended using spatial path planning for drone route application. On top of
that, Bézier curve based on smooth path planning may also be extended to
�nd the curvatures (Misro et al., 2017b,c) versus speed (Ibrahim et al., 2017,
Misro et al., 2019b).
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